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Recent Advances in Statistical Methods for Genome-Wide

Association Studies
- How do we distinguish a needle from a string of hay?

Introduction to Genome-Wide Association Studies

Genome-wide association studies (GWAS) are done to identify relationships between genomic
polymorphisms and disease states or traits of an organism. The completions of the Human Genome
Project in 2003 and the International HapMap Project in 2007 have enabled finding genomic variations
linked to an individual’s risk of certain diseases. As of March 12 2010, 507 publications have already
reported 2403 single nucleotide polymorphisms (SNPs) linked with human diseases or traits. (1) There
are over three million SNPs genotyped by the HapMap Project and, therefore, still much more
promising results from theses association studies are expected. (2)

However, the nature of GWAS brings up concerns such as verification of statistical significance
when a polymorphism is thought to be linked with a disease or a trait. Genotyping SNPs from a pool of
six billion bases from a sample and identifying significant SNPs across several thousands of samples is
clearly not a straightforward statistics problem. In fact, the term ‘population stratification’ describes
the common situation where the analyzed population of interest consists of subgroups that have

different ancestry. (3) This creates conflict with the “golden hypothesis” of statistics where the
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individuals in a sample population have resulted from random mating and therefore the associations

found are solely from the action of the identified polymorphisms.

Solutions to Population Stratification Problem in Genome-Wide Association Studies

To prevent spurious associations between random alleles and phenotypes, two methods,
Genomic Control and Structured Association, can be used to reduce false positives from the association
studies. In Genomic Control (GC), average inflation factor of null SNPs are calculated to cancel out the
possible misrepresentation of unrelated alleles due to population stratification. On the other hand,
Structured Association (SA) method assumes that the sample population is structured i.e. has
subpopulation of common ancestry, to a certain degree. The method then identifies the
subpopulations and corrects for their overrepresentation in the sample pool. However, both GC and SA
methods have their own caveats. While GC has limited applicability to a single SNP analysis, SA is
computationally demanding since no definitive number of subpopulations can ever be determined. (3)

In 2006, Yu et al. have proposed a unified mixed-model approach (MMA) that can treat multiple
levels of relatedness. (4) Their association mapping method “integrates genomic tools to uncover
population structure and familial relationships with the traditional mixed-model framework that has
long been used by animal geneticists.” It is flexible and can adjust to various populations with or
without substructures. This approach, also known as mixed linear model (MLM), outperforms others in

reducing the number of false positives and false negatives, as seen in the figure below.
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Figure 4. Model comparison with maize quantitative traits. [Reference (4)]

(a—c) Evaluation of the model type | error rates using random SNPs for flowering time (a), ear height (b) and ear
diameter (c). The cumulative distributions of observed P values are presented for the simple model, the Q model,
the K model, the Q + K model and the simple model with genomic control (GC). Under the expectation that
random SNPs are unlinked to the polymorphisms controlling these traits (Ho: no SNP effect), approaches that
appropriately control for type | errors should show a uniform distribution of P values (a diagonal line in these
cumulative plots). The simple model was included only for the purpose of illustrating the effect of ignoring
population structure and family relationships, as it is not a standard practice. (d—f) The adjusted average power
of the models for flowering time (d), ear height (e) and ear diameter (f). A genetic effect was added to each
random SNP (QTN effect), where k=0.1, 0.2, 0.5, 0.7, 0.9 and 1.0 times the standard deviation of the phenotypic
mean of a trait. Each model was adjusted based on its empirical type | error rate. The adjusted average power
for GC is the same as that of the simple model with the empirical threshold P value. For convenience of
comparison, we list the point value of phenotypic variation explained by a QTN at the allele frequency of p = 0.3.

However, the downside of MMA is that the computational power required increases rapidly as
population size increases. According to Zhang et al., the standard MMA involves a O(mpn?) process,
where m is the total number of markers, p is the number of iterations done and n is the number of
individuals in a sampled population. (6) (7) The current GWAS on humans may handle about a million

markers with a sample size in the order of thousands or, for certain meta-analysis studies, tens of



Recent Advances in Statistical Methods for Genome-Wide Association Studies Jong Lee

thousands of individuals to identify significant and reliable linkages for certain diseases and traits. (2) (6)
Since MMA can analyze a human dataset with 1,315 individuals in about 800 s CPU time for one
marker, it may take decades of CPU time if a large-scale GWAS on humans were to be done using the

method extensively. (6)

Recent Improvements in Mixed Model Approach

Very recently, two papers were published describing modification to the MMA scheme to
increase the computing speed by three to four orders of magnitude. Kang et al. showed that, through
estimation to the sample structure based on a variance component model, MMA approach gives better
performance in association studies than previously reported GC or principal component analysis
methods on the identical sample population (Northern Finland Birth Cohort and Wellcome Trust Case
Control Consortium). The implementation of this approach was released in publicly available software
called EMMAX (Efficient Mixed Model Association eXpedited). (5) (8) On the other hand, Zhang et al.
have improved MMA by reducing the number of samples by compressing individual data into clustered
groups and avoiding reiteration of variance components. They also released implemented software
called TASSEL (Trait Analysis by aSSociation, Evolution and Linkage). (6) (9) Remarkably, each approach
achieved up to 8000 fold reduction in computing time. The two approaches, however, lose little, if not
none, of the statistical significance acquired from original MMA and even sometimes provide results
with better significance than previous methods. Two data tables and a figure from the work of Kang et
al. (5) are shown below to emphasize superior significance of associated SNPs and lower inflation

factors by EMMAX by comparison with previous methods.
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Table 2 Fifteen peak associated SNPs with genome-wide significance

FPvalue
Trait rsiD Chr Base position® Closest gene Uncorrected + GC ES100 + GC  EMMAX + GC
HDL rs3764261 16 55650825 CETP 7.0x 10731 3.8x1031 3.7x10%
CRP rs2794520 1 157945440 CRFP 4.8x 10723 36x102%% 3.0x10%
LDL rsb46776 1 109620053 CELSRZ 5.4 x 10714 7.7 x 10715 38x10°1
CRP rs2650000 12 119873345 LEFI 2.1 x 10712 7.0x10712 19x101?
HDL rs1532085 15 56470658 LIPC 4.3 x 10712 79x 1011 10x10°l!
GLU rsb60887 2 169471394 G6PCZ2 1.1 x 10711 41x10712 31x1012
LDL rs693 2 21085700 APOB 9.6 x 10711 1.5x 10" 28x10711
TG 51260326 2 27584444 GCKR 1.9 x 10710 5.9 x 10°1 1.8 x 10710
HDL rs255049 16 66570972 LCAT 3.9x10°° 1.2 x 107° 1.4 x10°%8
LDL rs11668477 19 11056030 LDLR 1.4 x 1078 3.2x10% 4,1 x10°°
GLU rs2971671 7 44177862 GCK 1.8x 1078 1.7 x 107° 1.6 x 1078
HDL rs7120118 11 47242866 NRIH3" 4.8 x 1078 6.6x 107% 1.1x10°%
TG  rs10096633 8 19875201 LPL 2.0x 1078 1.1 x 1078 1.9 x10°8
TG  rs673548 2 21091049 APOB 8.0x 1078 1.2x 107 6.4 x 1078
HDL rs1800961 20 42475778 HNF4A 1.5x 1077 9.5x 10°% 1.8 x 1078

These SNPs had Pvalues below the suggested32 genome-wide significance threshold of 7.2 x 102 in the uncorrected,

the 100 principal components—corrected (ES100) or the EMMAX analysis after genomic control (+GC). Traits are

HDL, high-density lipoprotein; CRP, C-reactive protein; LDL, low density lipoprotein; GLU, glucose; TG, triglyceride.
rsID, reference SNP |D assigned by dbSNP; Chr, chromosome; boldface indicates the strongest P values across the
three methods; italics indicate P values that did not surpass the significance threshold.
3Pgsitions are based on National Center for Biotechnology Information build 36.1. BNR1H3 is the locus whose association with

HDL that has not yet been replicated by other independent studies.

Table 3 Comparison of genomic control inflation factor obtained
with different models in seven WTCCC phenotypes

Genomic control inflation factor

Phenotype Uncorrected ES100 EMMAX

BD 1.105 1.071 0.998

CAD 1.063 1.048 1.006

cD 1.098 1.055 1.000

HT 1.055 1.051 0.997

RA 1.028 1.031 0.965 (0.989%)
T1D 1.043 1.028 0.946 (0.99179)
T2D 1.065 1.042 0.996

ES100, EIGENSOFT correcting for 100 principal components; BD, bipolar disorder;
CAD, coronary artery disease; CD, Crohn’s disease; HT, hypertension; RA, rheumatoid
arthritis; T1D, type 1 diabetes; T2D, type 2 diabetes.

aThe variance component parameters [02,, and O'ZE,] are estimated by conditioning on the
large-sized SNP effects explaining 1% or more phenotypic variance.
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Supplementary Figure 2: QQ-plots on the logl0 scale of the association p-values obtained for
nine traits according to three different models for 9 NFBC66 metabolic trais and 7 WTCCC dis-
ease phenotypes. In black, results from the unadjusted analysis: in blue results from the analysis

conducted using 100 PC, and in red results from EMMAX.
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Conclusion

Genome-wide association studies are powerful tools in identifying novel connections between
genome and various diseases and traits. Nevertheless, high occurrences of false positives and false
negatives in these association studies provide a statistical challenge in distinguishing the positives from
the negatives. The situation is analogous to finding a needle in a hay stack. If one were to ignore that a
well-dried string of hay may be as straight and as sharp as a needle, he or she might end up with
something completely irrelevant when inappropriate criteria are applied. Mixed model approach
(MMA) takes the population structure into account in analyzing associations between phenotypes and
alleles. Moreover, two studies have recently reported evidences that MMA can be tractable in large-
scale studies by applying estimations between the steps of analyses with improved precision without
compromising the analytical power. These accomplishments enable MMA to be used more extensively
in GWAS on humans, with greater number of markers and population size and complete the analyses
in hours or days instead of years. Future studies may investigate the possible synergistic or additive
effects on the combination of the two approaches to provide further improved performance. Although
we have been already seeing the explosion of remarkable results from genome-wide association

studies, we may be expecting to get most of the “needles” out of a haystack.
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